SHOCK STRUCTURE IN A VISCOELASTIC MEDIUM
WITH A NONLINEAR DEPENDENCE OF THE
MAXWELLIAN VISCOSITY ON THE PARAMETERS
OF THE MATERIAL
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The shock-profile structure in a viscoelastic medium with a nonlinear dependence of the
Maxwellian viscosity X a quantity inverse to the tangential stress-relaxation time 7) on the
substance parameters is investigated in this paper on the basis of a model proposed in [1].
The presence of such a dependence of the relaxation time permitted the extraction of sec-
tions with an abrupt change in the quantities on the profile, called plastic waves, by using
additional relationships. The model of the isotropic medium used is characterized by an
equation of state in the form of a dependence of the density of the internal energy E per unit
mass on the strain-tensor invariants and the entropy S.

1. ONE-DIMENSIONAL SYSTEM OF EQUATIONS

Maxwell viscoelastic terms which describe the process of tangential stress deviator relaxing with
time are included in the equations of the medium [1] to describe the plastic-deformation processes.

Plastic deformations proceed as the entropy of the material increases. The characteristic time T of
the relaxation process can hence vary between broad limits as a function of the state of the medium; its
temperature, degree of compression, and intensity of the tangential stresses. Condensed substances, met-
als, powders, liquids, should be among such media.

As has been mentioned in [2], a metal under normal conditions has a characteristic time T on the
order of several hours, while 7 drops to 10~° sec under shock loadings [3].

In this connection, an investigation of the shock structure in viscoelastic media with strongly vary-
ing relaxation time of the tangential stresses is of considerable interest. The form of the equations of
state proposed in [4], and interpolation formulas for the dependence of the magnitude of the Maxwellian
viscosity on the temperature, compression, and tangential stress intensities presented in [3] were used in
computations of specific examples.

Let us note that the temperature dependence of the flow stress had to be taken into account in [5, 6]
devoted to shocks in Plexiglas, which were studied experimentally by using an elastoplastic scheme,

Let us examine the system of differential equations describing the motion of a viscoelastic medium
parallel to the selected x axis in the (x, y, z) space

do/ 0t + dou/ dx =0 .1
dpu [ 0t - 9 [ew? — 3] =0 (1.2)
or
du(F + ut/2) dfpu (F+u?/2) —cin]
at + Br =0 (1.3)
B, ) PP
m—}—u%:—tl(g_—__._a i ) (1.4)
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Here x and t are the space coordinate and the time, u is the

|

b ; /// TN S velocity of substance motion along the x axis, the quantities ¢, 8

,J]/ e NN and y are the logarithms of the relative elongations ky, k,, k; along
H. l/ \\ ‘ the x, y, z axes: a@=Inky, B=Ink,, y=Ink,.

| ; \\ f Since the medium is considered isotropic, then B =1y during
\\f ¢ \\ ; the whole motion process. The quantity p is the density, it being

‘i\ \\ } 0.7 f related to @, 8 and y by the relationship

i 7 .

AN p = presizm ws)
;L AN 1 S~ where p° is the density of the substance in the initial state.
. 7\\ -7 The density of the substance internal energy per unit mass

, L is related to the density of the entropy S per unit mass and the

i ] quantities @, 8 and v by the equation of state for an isotropic me-~

i | —/ dium

Fig. 1 E=FE(a f v, S) (1.6)

Here E is a symmetric function of &, 8, v. The quantity ¢,
is the principal stress directed along the x axis. Because of the
isotropy of the medium, it can be assumed that the principal stresses ¢, and g3 are directed along the y
and z axes. In this case the stresses gj are related to the strains by the formulas

o oF o .
S1=Pgy 52—'—95.3—, 53:95,\‘7 (1.7

Because of isolropy o, = 3.
The relaxation time 7> 0 ig a function of the state of the medium, i.e.,
T=1(a, B, p, ) (1.8)

The system (1.1)-(1.8) is a one-dimensional version of the system of equations proposed in [1], re-
ferred to the principal axes of the stress tensor. The system (1.1)-(1.8) and the system in [1] differ by the
form of the members in the right side of (1.4), which describe the plastic strain process. The use of a
phenomenological approach yields no advantages whatever over these methods of introducing the relax-

ation terms.

Let us present the equation for the entropy which is a corollary of {1.1)~-{1.7):

ora(l +u) - o=t )
as well as formulas for the speeds of sound: longitudinal,
¢ = (BE | da? — OE | da)' (1.10)
and transverse,
b = (Y,0E | dD)': (1.11)
= g |lo— =)+ - ) (- 257 (1.12)

2. RELATIONSHIPS ON THE SHOCKS

Let us call a shock a solution of the system (1.1)~(1.9) of the form
a=qaf(z~-Ut), p=y=0z—-Un, §=S5(-—1U (2.1)
Let the shock be at rest in the selected coordinate system, i.e., U=0. Then (2.1) satisfies the system
[dpu/dx:O, d(pu® —osy)/dx =0
| A low (B - u2/2) — 51 a3 a—3 (2.2)

7 =0, g ="5

At the ends of the shock (for x— =) the quantities @, 8 and S should take on finite values, andde /dx,
dB/dx and dS/dx vanish. It follows from (2.2) that « = p =y = ¥,In (0° / p) and gy=0,=03=—p at the ends

-
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-5,,/rgm of the shock, i.e., the medium should be subjected to hydro-
a-re X static pressure. Letting w denote the stream of substance

\ | through the shock,

1500 \© 5\ w = pu (2.3)

\\/
\ AN we obtain by using (2.2) that the values of the quantities at the
N \ . :
N ends of the shock are connected by relationships analogous to
y N the gasdynamic relationships

PN N\ (pl=will/p], [ul=—wll/p]
00 9 AR [E] —ﬂizﬂ [1/p]=0 (2.4)

~ s u=3=71=1;In(p°/p)

X Here p, and p; are the magnitudes of the pressure in

g4 78 vy 1 front of and behind the wave. As follows from (2.2) and (2.3),
Fig. 2 the thermodynamic quantities and velocity within the wave are

connected by the relationships

4

(2.5)
6, T po=w{1/p—1/py) (2.6)
E—Ey+l(po—o0)/21(1/p—170)=0 (2.7)

d3 pa—3
wh = £ (2.8)

u—ug=wi{l/p—1/py

Here B =1, uy, pg, Py, Eg are the magnitudes of the velocity, density, pressure, and energy ahead of
the wave. The problem of constructing the wave profile reduces to integrating the system (2.6)-(2.8) with
the additional relation (2.5), and the problem of determining the state behind the wave in terms of the ve-
locity w, and the state ahead of the wave p,, S, reduces to the solution of the system (2.4). The problem of
determining the state behind the wave is solved in complete analogy with gasdynamics: if the equation of
state (1.6) satisfies the inequalities

OE [ dp® >0, 2E /0008 >0, E/aS* >0, (2.9)
GBE . dpp < 0, OE /8D >0

for @ =3=1, then the Hugoniot adiabat in the (p, 1/p) plane,
E,— E, %_'1'1_;_}73 oy —1/p)=0, a=B=7 (2.10)

has only two intersections with the Michelson line
[pl = —w? [t /pl, a=p=y (2.11)
corresponding to the initial and final state (py, 1/p,) and (py, 1/p4).

The Hugoniot adiabat in the initial state is tangent to a line with the slope w=py{cy®—4/3by*) which is
the modulus of volume compression. The secant with the slope wy =pycy corresponds to the adiabat of the
so-called "Hugoniot point" (ph, 1/,oh). Supersonic wave velocities correspond to points of the Hugoniot
adiabat lying above (ph, l/ph), and subsonic to the rest. Presented below are values of (ph, pp/p°) for
some metals.

Metal Fe Al Cu N1 Ph Tt
Ph, kbar 386.4 112 207.8 227.5 36.00  115.8
Lnlp 1.175 1.116 1.117 1,080 1.069 1.082

3. SHOCK STRUCTURE
Let us consider the structure of a shock profile. It follows from (2.6)~(2.8) that the problem of con-
structing the profile reduces to solving the system of equations
po+ 0y ==uwt(l p—1/pg) (3.1)
E—Ey+Fg=(/p—1ip)=0 (3.2)

-
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under the condition 8=v and the quadrature
dx /dp = 3w /p (a — B) (3.3)

The system (3.1), (3.2) determines a curve in the space @, 8, S which we call the curve of possible
states. The curve of possible states is projected on the @, 8 plane as a closed convex curve intersecting
the line @ =8 and two, and only two, points corresponding to the beginning and ending state of the shock.
Curve 1 in Fig. 1 corresponds to [wl <pyc, and curve 2, to |Wl>poco. Here (a-phase) iron was taken as the
material. Corresponding to curve 2 is |w|/pgc,=1.48 and to curve 1is |[w|pyc,=0.88. For a subsonic wave
(Iwl <pqcg) the portion of the curve of {3.1), (3.2) in the half-plane 8> @ and the quadrature (3.3) yield the
solution of the problem of constructing the profile. At supersonic wave velocities in the neighborhood of
the initial state, we find from (3.1) and (3.2)

o -— o co% — 2bo? — w? [ pe?
B—Bo —2 co? — w?/ pe? {3.4)

For supersonic waves,(a—a;)/(B—8¢) <0. It hence follows that there should be a discontinuity in the
wave profile. From (3.3) and w(dB/dx) <0 there follows 8> ¢; the profile continuity would contradict the
monotonicity of 8 (x) because of (3.4).

In this connection, the problem of constructing a generalized (discontinuous) solution for the case
|wW]>pycy must be solved.

Let us introduce a discontinuity, an elastic predecessor, into the solution by imposing the additional
relationship [8] =0 thereon. This equality assures the absence of stress relaxation within the elastic jump.
The introduction of the discontinuity [8] =0 in the wave profile can be performed uniquely, namely, it
is at the beginning of the wave, emergence from the initial state is impossible by using a smooth solution,
and a curve of possible states has a single point of intersection with the line 8=8, (see Fig. 1) in the 3>«
plane because of the convexity. A smooth passage to the position corresponding to the end of the shock
from this point is possible along the curve of possible states in the plane 8> a.

For |w| > poCq the shock is comprised of the jump governed by the relations (3.1), (8.2) and B=48,,
which we call the elastic wave, and a smooth section governed by the relations (3.1)-(3.3), which can be
called the relaxation layer. There is no elastic jump in the case lw|<pycy. In both cases, the relationship
B>a,i.e., g,> 0y, is satisfied everywhere on the shock. It is convenient to represent the shock in the oy,
1/p) plane. Shown in Fig. 2 are the curves 4 and 5 of the shock adiabats corresponding fo the final state
and the elastic jump. Lines 1, 2, and 3 are the transition lines of (3.1). The elastic adiabat 5 in Fig. 2 is
tangent to the transition line 2 at the initial point, corresponding to the Hugoniot point of the adiabat of the
final state. This means that the elastic jump.diminishes as the shock attenuates and vanishes for lw| < PgCoe

For equations of state satisfying the inequalities (2.9) for 8= const, the elastic jump satisfies the re~
quirements of evolutionarity.

4. PLASTIC WAVES

The question of the shock structure was examined in Sec. 3 without taking account of the possible
singularities associated with the dependence of the relaxation time 7 on the parameters of the medium. If
T were constant, then the relaxation layer would represent a smooth transition. For real substances the
relaxation time depends essentially on the temperature T, the density p, and the tangential stress intensity
o. For metals (see [3])

T = To(5/50)"e " > TV/ET (4.1)

Here Ulg, T) is the activation energy, R is the universal gas constant, and 7(, gy are constants. Such
acute dependences for the relaxation time for metals result in a section with a steep front being formed
on the relaxation layer, which can be isolated in an individual wave.

Such a front structure, split into the elastic predecessor and a plastic wave,has been obhserved re-
peatedly in experimental investigations of shocks in metals and has been described qualitatively in [7], for
instance.

In the terminology used in the paper, this description can be made as follows: Let us be given the
characteristic duration At of the plastic wave, and let us construct a curve governed by the relationships
(8.1), (3.2), and T=4At [T from (4.1)] in the plane (—¢y, 1/p) for different values of the velocity w.
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~g, Kbar , In addition to the elastic and hydrodynamic adiabat

' curves 1 and 2 in Fig. 3, the curves 3 and 4 are presented

\ \ i which correspond to the distinct values 7=1 psec and 100 psec

. (copper was selected as material). We call the curves corre-

" sponding to these values the plastic adiabats. Let us replace
the plastic waves of width = At by discontinuous solutions for
which the magnitudes of the jumps are calculated by using the
plastic adiabats.

)

2

Let us call this process the extraction of the plastic waves.

Let us consider diverse cases of extracting plastic waves
in the front structure by the example of copper. Analogous rea-
soning can be carried out for other metals also. They depend
on the shock velocities. For strong shocks fwl >pgCy (the pres-
1 Zp— S sure behind the front is greater than 200 kbar), the plastic
Pl ‘ adiabats are practically indistinguishable from the hydrody-

/ | namic adiabats, and the conditions

7 798 oy 1

17 T=A4, 1=At

7 r are substantially equivalent to the conditions @ =8. This means
z that for sufficiently strong shocks in metals, the distinction be-
tween gy and g, can be neglected, and the hydrodynamic approach
) cah be used, as is often done. From this viewpoint it is under-
Fig. 4 standable why a metal behaves as a fluid at high pressures.

Presented in Fig. 4 is the shock profile 1 corresponding to the
— secant 1 (Fig. 2, curve 5). It is seen from the front structure

/ -
7 Z 270 T sec ¥

-6, Kbar| <
il , ‘ that in this case the elastic jumps at the thicknesses At; and
\\\(7 ! \\ X | At, are indistinguishable from the relaxation layer, and, hence,
2 AN Y ! the plastic wave can be isolated by the fundamental relation-
ALY \ ) : ships
3
AN sotsnfl 1) (1 1
\\\\ \ EI—EO———I—.)—ll{T-—T)ZO, 311 = Opp == W* (?1_—9_0) (4-2)
Y \\ \\\ \ = ‘P Po k
i \\‘:\t\ \\‘ uy— g ==V (11— 310) (1 /01 — 1/p0) {4.3)
NSO A
\x\ \\ and by one additional relationship behind the shock,
BN Tl f S = (4.4)
\\\ which corresponds to the intersection of the plastic adiabat
T Py with the secant 1 in Fig. 2. The Euler velocity D of the bound-~
. ’ ary is determined by the relationship
Fig. 5 -
Vo Voeae 1/511 il 4
D= eV pre—— 4.5)

For waves at a subsonic velocity {|w] <pyCy, Secant 2 in Fig. 2, curve 5), the characteristic profile
is represented by curve 2 in Fig. 4. Since the wave proceeds at a subsonic velocity, the isolation of the
wave is accomplished by means of two additional relationships, in addition to the fundamental (4.2) and
{4.3): in front of the wave,

T (g, PBor So) = At (4.6)
and behind the wave (4.4), which corresponds to the intersection between the plastic adiabat and the secant
2 in Fig. 5 at two points.*

In the intermediate case between those described above, when shock-wave propagation is at a ve-
locity somewhat exceeding the speed of sound (secant 3 in Fig. 5), the front structure has the shape of the
curve shown in Fig. 4 by curve 3. In this case there is the elastic jump advancing by the plastic wave. In
this case the plastic wave is isolated by using the two additional relationships (4.4) and (4.8), as in the

* Adjustment of 7(e, B, S) to the same constant At is not necessary in (4.4) and (4.6).
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subsonic mode, which also corresponds to the intersection beiwesn the secant 3 in Fig. 5 and the plastic
adiabat at two points. The need to use the two additional relationships to isolate the plastic wave is re-
lated to the fact that the velocity of the plastic wave is less than the speed of sound ahead of the wave. This
fact follows from the circumstance that the speed of sound behind the elastic jump grows along the wave
profile.

Plastic waves of width greater than At were not considered discontinuous. Secants of the shape 4 in
Fig. 5 correspond to them.
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