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The shock-p ro f i l e  s t r u c t u r e  in a v i s c o e l a s t i c  medium with a nonl inear  dependence of the 
Maxwel l ian  v i s c o s i t y  X ~a quanti ty i n v e r s e  to the tangent ia l  s t r e s s - r e l a x a t i o n  t ime  ~-) on the 
subs tance  p a r a m e t e r s  is  inves t iga ted  in this  pape r  on the bas i s  of a model  p roposed  in [1]. 
The p r e s e n c e  of such a dependence of the re laxa t ion  t ime p e r m i t t e d  the ex t rac t ion  of s e c -  
t ions with an abrupt  change in the quant i t ies  on the prof i le ,  ca l led  p la s t i c  waves ,  by using 
addi t ional  r e l a t i onsh ips .  The model  of the i s o t r o p i c  medium used  i s  c h a r a c t e r i z e d  by an 
equation of s ta te  in the fo rm of a dependence of the densi ty  of the in te rna l  energy  E p e r  unit 
m a s s  on the s t r a i n - t e n s o r  i nva r i an t s  and the ent ropy S. 

1.  O N E - D I M E N S I O N A L  S Y S T E M  O F  E Q U A T I O N S  

Maxwell  v i s coe l a s t i c  t e r m s  which d e s c r i b e  the p r o c e s s  of tangent ia l  s t r e s s  dev ia to r  re lax ing  with 
t ime a r e  included in the equations of the medium [1] to d e s c r i b e  the p l a s t i c - d e f o r m a t i o n  p r o c e s s e s .  

P l a s t i c  de fo rmat ions  p roceed  as  the en t ropy  of the m a t e r i a l  i n c r e a s e s .  The c h a r a c t e r i s t i c  t ime ~" of 
the r e l axa t ion  p r o c e s s  can hence va ry  between broad l imi t s  as  a function of the s ta te  of the medium; i ts  
t e m p e r a t u r e ,  degree  of compress ion ,  and in tens i ty  of the tangential  s t r e s s e s .  Condensed subs tances ,  m e t -  
a l s ,  powders ,  l iquids ,  should be among such media .  

As has been ment ioned in [2], a me ta l  under  no rma l  condit ions has a c h a r a c t e r i s t i c  t ime  ~" on the 
o r d e r  of s e v e r a l  hours ,  while ~- drops  to 10 -5 sec  under  shock toadings  [3]. 

In this connection, an investigation of the shock structure in viscoelastic media with strongly vary- 
ing relaxation time of the tangential stresses is of considerable interest. The form of the equations of 
state proposed in [4], and interpolation formulas for the dependence of the magnitude of the Maxwellian 
viscosity on the temperature, compression, and tangential stress intensities presented in [3] were used in 

computations of specific examples. 

Let us note that the temperature dependence of the flow stress had to be taken into account in [5, 6] 
devoted to shocks in Plexiglas, which were studied experimentally by using an elastoplastie scheme. 

Let us examine the system of differential equations describing the motion of a viscoelastic medium 

parallel to the selected x axis in the (x, y, z) space 

Op / Ot + Opu / Ox = 0 (1.1) 

Opu /Ot -~ 0 [pu"- --,z~l =. 0 (1.2) 
ox 

0;~(E ~ "212) O[pu(E-}-u2/2)--~lu] = 0  (1.3) 
Ot ~ Ox 

Ot ' 3 
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Here x and t are the space coordinate and the time, u is the 

velocity of substance motion along the x axis, the quantities (~, fl 

and T are the logarithms of the relative elongations kl, k2, k 3 along 

the x,  y, z axes :  ~ =In  kl, f l= In  k2, 7 = l n  k S. 

Since the m e d i u m  i s c o n s i d e r e d  i so t ropi  c, then B = Y dur ing  
the whole mot ion  p r o c e s s .  The quant i ty  p is  the dens i ty ,  i t  being 
r e l a t ed  to ~, fl and y by the re la t ionsh ip  

P = P ~ (1.5) 

where p~ is the density of the substance in the initial state. 

The density of the substance internal energy per unit mass 
is related to the density of the entropy S per unit mass and the 
quantities c~, fl and y by. the equation of state for an isotropie me- 
dium 

E = E ( a ,  ~, 7, S) (1.6) 

Here E is a symmetric function of ~, fi, y. The quantity 0-i 
is the principal stress directed along the x axis. Because of the 

sotropy of the medium, it can be assumed that the principal stresses 0-2 and 0-3 are directed along the y 
and z axes. In this case the stresses 0-i are related to the strains by the formulas 

OE aE o~ (1.7) 
z1== 9 s 1 6 3  , z~ = 9 ~ , ~3 = g yz(, 

Because  of  i s o t r o p y  0-2 ~ 0- 3. 

The r e l axa t ion  t ime ~-> 0 i s  a funct ion of  the s ta te  of  the med ium,  i .e . ,  

= ~(a ,  ~, 7, S) (1.8) 

The s y s t e m  (1.1)-(1.8) i s  a o n e - d i m e n s i o n a l  v e r s i o n  of the s y s t e m  of equat ions  p r o p o s e d  in [1], r e -  
f e r r e d  to the p r inc ipa l  axes  of the s t r e s s  t e n s o r .  The s y s t e m  (1.1)-(1.8) and the s y s t e m  in [1] d i f fe r  by  the 
f o r m  of the m e m b e r s  in the r igh t  s ide of  (1.4), which d e s c r i b e  the p las t ic  s t r a in  p r o c e s s .  The use  of a 
phenomenolog ica l  a p p r o a c h  y ie lds  no advan tages  w h a t e v e r  ove r  these  me thods  of  i n t roduc ing  the r e l a x -  
at ion t e r m s .  

Le t  us p r e s e n t  the equat ion  fo r  the e n t r o p y  which is  a c o r o l l a r y  of (1.1)-(1.7):  

3 7 

as  wel l  as  f o r m u l a s  fo r  the speeds  of sound: longi tudinal ,  

c = (02E / Oa 2 - -  OE / O(z) ~;~ (i.i0) 

and transverse, 

b = ( V e O E /  OD)~,' 

D = ~--:x ~- 3 -" T 3  ~ ~' ~ ~+~+!3  "~- "( u 3 

(1.11) 

(1.12) 

2. RELATIONSHIPS ON THE SHOCKS 

Let us call a shock a solution of the system (1.1)-(1.9) of the form 

a = cL(x - -  Ut ) ,  ~ - - 7 - -  ~ ( x - -  Ut ) ,  S = S ( x - -  Ut )  (2.1) 

Le t  the shock  be at r e s t  in the s e l ec t ed  coord ina te  s y s t e m ,  i .e . ,  U = 0. Then (2.1) sa t i s f i e s  the s y s t e m  

Idpu  / d x  = O, d ( p u z  - -  51) / d x  = 0 

] d~ ~ - ~  (2.2) 
d [ p u ( E  v - u 2 / 2 ) - -  zlu] -~ O, U ~ x ~  3~ c 

�9 dx 

At the ends of the shock  (for  x - *  • the quant i t ies  c~, fl and S should take on f ini te  va lues ,  andd(x/dx,  
dfl/dx and dS/dx vanish .  I t  fo l lows f r o m  (2.2) that  a = ~ = ? = 1/31n (P~ / 9) and 0-1=0-2=~ = - p  at  the ends 
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of the shock, i.e., the medium should be subjected to hydro- 
static pressure. Letting w denote the stream of substance 
through the shock, 

w = 9u (2.3) 

we obtain by using (2.2) tha t  the va lues  of the quant i t ies  at  the 
ends  of the shock  a r e  connected  by r e l a t ionsh ips  analogous  to 
the g a s d y n a m i c  r e l a t ionsh ips  

[ p l = w " [ i / 9 ] ,  [ u J = - - w [ l / 9 ]  

[E] ' P"+P '  [1/O] = 0 (2.4) 2 

= ~ = 7 = ~/ain(p~ 

Here  P0 and Pl a r e  the magn i tudes  of the p r e s s u r e  in 
f ront  of and behind the wave.  As fol lows f r o m  (2.2) and (2.3), 
the t h e r m o d y n a m i c  quant i t ies  and ve loc i ty  within the wave a r e  
connec ted  by the r e l a t ionsh ips  

u - -  u0 = u , ( 1 / p - -  l / p 0 )  

% Tp0-- u'2 ( l  / 9 - -  I / p o )  

E - -  E o @ [(Po - -  ~ )  / 2] ( t  / p - -  i / 9o) = 0 

d3 p ~--3  

(2.5) 

(2.6) 

(2.7) 

(2.8) 

Here  fl =T, u0, P0, P0, E0 a r e  the magn i tudes  of the veloci ty ,  densi ty ,  p r e s s u r e ,  and e n e r g y  ahead  of 
the wave.  The p r o b l e m  of c ons t ruc t i ng  the wave prof i le  r educes  to i n t eg ra t ing  the s y s t e m  (2.6)-(2.8) with 
the addit ional  r e l a t ion  (2.5), and the p rob l e m of de t e rmin ing  the s ta te  behind the wave in t e r m s  of the r e -  
loc i ty  w, and the s ta te  ahead  of  the wave Po, So r educes  to the solut ion of the s y s t e m  (2.4). The p rob lem of 
d e t e r m i n i n g  the s ta te  behind the wave is so lved  in comple te  ana logy with g a s d y n a m i c s :  if  the equation of 
s ta te  (1.6) s a t i s f i e s  the inequa l i t i es  

O~-E / Op 2 > 0, O~E / OoOS ~ O, O'-E / OS 2 > 0, (2.9) 
OaE , 0p a ~ 0 ,  OE / OD > 0 

for  f f=f l=T,  then the Hugoniot  adiabat  in the (p, l /p )  plane,  

E~ -- Eo "-/ '~ -- po (1/:p~ -- t'/po)~= 0, 2 a = ~ = 7 ( 2 . 1 0 )  

has only two i n t e r s e c t i o n s  with the Miche l son  l ine 

[p] = --u, 2 [1 / p], a = ~ = ? (2.11) 

c o r r e s p o n d i n g  to the init ial  and final s ta te  (P0, 1/00) and (Pl, 1/Pt ) .  

The Hugoniot  ad iabat  in the ini t ial  s ta te  is  tangent  to a line with the Mope w=P0(C0a-4/3b02) which is 
the modulus  of  vo lume  c o m p r e s s i o n .  The secan t  with the slope w h=00% c o r r e s p o n d s  to the adiabat  of the 
s o - c a l l e d  "I-Iugoniot point" (Ph, 1/0h)- Superson ic  wave ve loc i t i e s  c o r r e s p o n d  to points  of the Hugoniot  
ad iabat  lying above (Ph, 1/0h),  and subsonic  to the r e s t .  P r e s e n t e d  below a r e  va lues  of (Ph, 0h/0~ for  
s o m e  me ta l s .  

Meta l  Fe .k| Cu N1 P�91 Tt 

Ph,  kbar 385.4 t12.1 207.8 227.5 36.oo t15.8 
Oh/P- t .175 1.116 1.117 1.090 t .069 1.082 

3. SHOCK STRUCTURE 

Let us consider the structure of a shock profile. It follows from (2.6)-(2.8) that the problem of con- 
structing the profile reduces to solving the system of equations 

Po T o 1  := u a ( t  p - -  i /90) (3.1) 
p J 

E - - E o T  ., ; ~ ( l / p - -  1/po) = 0 (3.2) 
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under the condition/3 =y and the quadrature 

dx / tilt = 3zw / p (a --  [~) (3.3) 

The sys tem (3.1), (3.2) de termines  a curve in the space a ,  t ,  S which we call the curve of possible 
states.  The curve of possible s tates  is projec ted  on the a ,  fl plane as a closed convex curve in tersect ing 
the line a =fl and two, and only two, points corresponding to the beginning and ending state of the shock. 
Curve 1 in Fig. 1 cor responds  to [w[ <P0C0 and curve 2, to [w[>p0c 0. Here (a-phase)  i ron was taken as the 
mater ia l .  Corresponding to curve 2 is ]wI/P0c0 = 1.48 and to curve 1 is [wlP0C0 = 0.88. F o r  a subsonic wave 
([wl <p0c05 the portion of the curve of (3.15, (3.2) in the half-plane fl > a and the quadra ture  (3.35 yield the 
solution of the problem of construct ing the profile.  At supersonic wave velocit ies in the neighborhood of 
the initial state,  we find f rom (3.1) and (3.2) 

a - -  a o  ~ -  _ _  2 c~ - -  2b~  - -  w2/p~ ( 3 . 4 )  
- -  ~o  co ~ - -  w2 / p ~  

For  supersonic  w a v e s , ( a - a o ) / ( f l - f l  o) < 0. It  hence follows that there should be a discontinuity in the 
wave profile.  F r o m  (3.3) and w(dfl/dx)< 0 there  follows/~> a ;  the profile continuity would contradict  the 

monotonicity of fl (x) because of (3.4). 

In this connection, the problem of construct ing a general ized (discontinuous) solution for the case 

twl >p0c0 must  be solved. 

Let us introduce a discontinuity, an elast ic  p redecessor ,  into the solution by imposing the additional 
relationship I t ]  =0 thereon.  This equality a s su re s  the absence of s t r e s s  relaxation within the elast ic jump. 
The introduction of the discontinuity [fl] = 0 in the wave profile can be pe r fo rmed  uniquely, namely, i t  
is at  the beginning of the wave, emergence  f rom the initial state is impossible  by using a smooth solution, 
and a curve of possible s tates  has a single point of in tersect ion with the line fl =rio (see Fig.  1) in the t >  
plane because of the convexity. A smooth passage to the position corresponding to the end of the shock 
f rom this point is possible along the curve of possible s tates  in the plane t >  a .  

F o r  [wl >P0e0 the shock is  compr ised  of the jump governed by the relat ions (3.1), (3.2) and fl=flo, 
which we call the elast ic  wave, and a smooth section governed by the relat ions (3.1)-(3.3), which can be 
called the relaxation layer .  There  is no e las t ic  jump in the case Iwl <p0c0 �9 In both cases,  the relationship 
t >  a ,  i .e. ,  ~2> ~l, is satisfied everywhere  on the shock. It is  convenient to r ep resen t  the shock in the (-~1, 
l / p )  plane. Shown in Fig.  2 are  the curves  4 and 5 of the shock adiabats corresponding to the final state 
and the e las t ic  jump. Lines 1, 2, and 3 are  the transi t ion lines of (3.1). The elast ic  adiabat 5 in Fig. 2 is 
tangent to the t ransi t ion line 2 at the initial point, corresponding to the Hugoniot point of the adiabat of the 
final state. This means  that the elast ic  jump.diminishes as the shock attenuates and vanishes for [w[ <p0c0. 

F o r  equations of state satisfying the inequalities (2.9) for/~ = const, the elast ic jump sat isf ies  the r e -  
quirements  of evolutionarity.  

4. PLASTIC WAVES 

The question of the shock structure was examined in Sec. 3 without taking account of the possible 
singularities associated with the dependence of the relaxation time T on the parameters of the medium. If 
~- were constant, then the relaxation layer would represent a smooth transition. For real substances the 
relaxation time depends essentially on the temperature T, the density p, and the tangential stress intensity 

ft. For metals (see [315 

"~ = "r (5/fJO) m e - U  (~' T)/ RT (4.1) 

Here U(~, T5 is the activation energy,  R is the universal  gas constant, and To, ~0 a re  constants. Such 
acute dependences for  the relaxation t ime for meta ls  resul t  in a section with a steep front being formed 
on the relaxation layer ,  which can be isolated in an individual wave. 

Such a front s t ruc ture ,  split  into the elast ic  p r e d e c e s s o r  and a plast ic wave ,has  been observed r e -  
peatedly in experimental  investigations of shocks in metals  and has been descr ibed qualitatively in [7], for 
instance.  

In the te rminology used in the paper,  this descript ion can be made as follows: Let us be given the 
charac te r i s t i c  duration At of the plastic wave, and let us const ruct  a curve governed by the relat ionships 
(3.1), (3.25, and T =At [T f rom (4.1)] in the plane (--~1, i / p )  for different values of the veloci ty w. 
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F o r  waves at a subsonic velocity ([w[ <p0c0, secant 2 in Fig. 
is represented  by curve 2 in Fig. 4. Since the wave proceeds at a 
wave is  accomplished by means of two additional relationships,  in 
(4.3): in front of the wave, 

(%, ~o, S0 )=  ,~t 

In addition to the e las t ic  and hydrodynamic  adiabat 
curves 1 and 2 in Fig. 3, the curves 3 and 4 are  presented 
which correspond to the distinct values ~- = 1 ~sec  and 100 #sec  
(copper was selected as material) .  We call the curves c o r r e -  
sponding to these values the plastic adiabats. Let  us replace 
the plastic waves of width ~ At by discontinuous solutions for 
which the magnitudes of the jumps are  calculated by using the 
plast ic adiabats. 

Let  us call this p rocess  the extract ion of the plas t iewaves.  

Let us consider diverse  cases of extract ing plastic waves 
in the front s t ructure  by the example of copper. Analogous r e a -  
soning can be car r ied  out for  other metals  also. They depend 
on the shock velocities.  F o r  s t rong shocks [w[ >P0C0 (the p re s -  
sure  behind the front is g rea te r  than 200 kbar), the plastic 
adiabats are  pract ical ly  indistinguishable f rom the hydrody- 
namic adiabats, and the conditions 

= Atl, x = At2 

are substantially equivalent to the conditions v~ =ft. This means 

that for sufficiently strong shocks in metals, the distinction be- 

tween ~i and cr 2 can be neglected, and the hydrodynamic approach 

can be used, as is often done. From this viewpoint it is under- 
standable why a metal behaves as a fluid at high pressures. 
Presented in Fig. 4 is the shock profile 1 corresponding to the 

secant 1 (Fig. 2, curve 5). It is seen from the front structure 

that in this case the elastic jumps at the thicknesses At i and 

At 2 are indistinguishable from the relaxation layer, and, hence, 

the plastic wave can be isolated by the fundamental relation- 

ships 

E I - - E o - -  7 ( --  ) = 0 ,  = - -  (4.2) - ,~  7o ~ t ~ - ~ 0  ~ ~o 

u t -  Uo = ~ V ( ~ n -  ~1o)(t / p l -  t /p0) (4 .3 )  

and by one additional relationship behind the shock, 

~(a,, ~,, S , ) :  At (4.4) 

which corresponds  to the intersect ion of the plast ic  adiabat 
with the secant 1 in Fig. 2. The Euler  velocity D of the bound- 
a ry  is determined by the relationship 

(4.5) 
V,',-~-- V ~  - '-  ' ~ ' - - - ~  

2, curve 5), the charac te r i s t ic  profile 
subsonic velocity, the isolation of the 
addition to the fundamental (4.2) and 

(4.6) 

and behind the wave (4.4), which corresponds  to the intersect ion between the plast ic adiabat and the secant  
2 in Fig. 5 at two points.* 

In the intermediate  case between those descr ibed above, when shock-wave propagatioh is at a ve-  
locity somewhat  exceeding the speed of sound (secant 3 in Fig. 5), the front s t ructure  has the shape of the 
curve shown in Fig. 4 by curve 3. In this case there is the elast ic jump advancing by the plastic wave. In 
this case the plastic wave is isolated by using the two additional relationships (4.4) and (4.6), as in the 

* Adjustment of 7(o~, t ,  S) to the same constant At is not necessa ry  in (4.4) and (4.6). 
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subsonic ~ode, which aise correspor, ds to the intersection between the secant 3 in Fig. 5 and the plastic 
adiabat at ~o points. The ~eed to use the two additional relationships to isolate the plastic wave is re- 
lated to the fact that the velocity of the plastic wave is less than the speed of sound ahead of the wave. This 
fact follows from the circumstance that the speed of sound behind the elastic jump grows along the wave 
profile. 

Plastic waves of width greater than At were not considered discontinuous. Secants of the shape 4 in 
Fig. 5 correspond to them. 
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